Пожалуйста активируйте JavaScript и перезагрузите страницу!
Это необходимо для корректной работы сайта
Добро пожаловать на наш ресурс!
Здесь Вы найдете для себя много полезной информации!
linuxprof.ru

Конституционное (государственное) право зарубежных стран. Общая часть — Страница 5 — Ваш юрист

Конституционное (государственное) право зарубежных стран. Общая часть

Партия

Число голосов,

Число мест

Остаток голосов

деленное на квоту

А

126 000 : 44 444

2

37 112

Б

94 000 : 44 444

2

5 112

В

88 000 : 44 444

1

43 556

Г

65 000 : 44 444

1

20 556

Д

27 000 : 44 444

0

27 000

При этой квоте мы распределили уже шесть мест, а неиспользованными оказались 133 336 голосов (33,3 %). Такая квота используется при выборах в Национальный совет Австрии (при первом распределении).

Однако в любом случае использование метода квоты требует дальнейших операций: остаются неиспользованные голоса и нераспределенные мандаты. Если действовать в границах соответствующего избирательного округа, то могут применяться следующие правила.

Правило наибольшего остатка требует передать нераспределенные мандаты партиям, у которых остаток голосов самый большой.

В нашем первом примере это партии Б, В и Д. Общий результат: А – 2, Б– 2, В – 2, Г – 1, Д – 1. Партия Г получает один мандат на 65 тыс. голосов, а партия Д – всего на 27 тыс., то есть в 2,4 раза меньше. Отклонение от пропорциональности заметное.

Во втором примере наибольшие остатки у партий А и В. Общий результат: А – 3, Б – 2, В – 2, Г – 1, Д – 0. Партия Г опять же в невыгодном положении, так как у нее примерно 20 тыс. голосов оказались «лишними», но различие все же гораздо меньше, чем при квоте Хэра, ибо первым трем партиям для получения одного мандата потребовалось от 42 до 47 тыс. голосов. Партия Д осталась непредставленной, и голоса ее электората пропали.

Замечено, что правило наибольшего остатка (особенно при использовании квоты Хэра) в некоторой мере благоприятствует небольшим партиям, «подбирающим» оставшиеся после первого распределения мандаты. Иногда это правило применяется с ограничениями. Например, в Венгрии нераспределенные мандаты передаются только тем спискам, остатки голосов у которых превышают 2/3 квоты.

Большим партиям благоприятствует правило наибольшей средней, которое предусматривает передачу нераспределенных мандатов партиям, имеющим наибольшее частное от деления числа собранных ими голосов на число полученных при первом распределении мандатов плюс единицу. Это правило было предложено в 1792 году одним из «отцов-основателей» США и будущим Президентом этой страны Томасом Джефферсоном (1743 – 1826).

В наших примерах средние оказались бы следующими:

А — 126 000 : (2 + 1) = 42 000

Б —   94 000 : (1 + 1) = 47 000 (первый пример)

Б —   94 000 : (2 + 1) = 31 333 (второй пример)

В —   88 000 : (1 + 1) = 44 000

Г —   65 000 : (1 + 1) = 32 500

Д —   27000 : (0 +1) = 27 000

Нераспределенные три мандата в первом примере перешли бы к партиям Б, В и А, и общий результат был бы: А – 3, Б – 2, В – 2, Г – 1, Д – 0. Во втором примере нераспределенные два мандата перешли бы к партиям В и А, но общий результат был бы тот же. Правило также благоприятствует крупным партиям.

Мы видим, что если замкнуть распределение мандатов рамками отдельного избирательного округа, то в нем какая-то часть голосов пропадет, а если пропавшие голоса суммировать по всей стране, то их доля может стать заметной. Поэтому в ряде стран второе распределение производится либо по еще более крупным избирательным единицам, где объединяются остатки голосов и нераспределенные мандаты входящих в эти единицы избирательных округов, либо даже по стране в целом, как это было в Италии до избирательной реформы 1993 года. Австрийский Закон о выборах в Национальный совет учреждает на территории страны два объединения избирательных округов, в которых производится второе распределение мандатов. В нем могут участвовать только партии, которые при первом распределении получили хотя бы один мандат. Система, при которой мандаты распределяются в масштабе всей страны, достигает, если отсутствуют ограничения, наибольшей пропорциональности и именуется полной.

Метод делителей позволяет сразу распределить все мандаты в избирательном округе или по стране в целом. Он заключается в последовательном делении числа голосов, полученных каждым списком кандидатов, на определенную серию делителей. Все получаемые таким образом частные располагаются по убывающей, и депутатские мандаты приходятся на наибольшие из них. Наименьшее из таких частных представляет собой по существу ту же избирательную квоту.

Делители эти различны. Так, в 1882 году профессор Гентского университета (Бельгия) Виктор д’Ондт (d’Hondt) предложил делить просто на последовательный ряд целых чисел, начиная с единицы: на 1, 2, 3, 4 и т. д. Этот метод заметно благоприятствует крупным партиям и принят в ряде стран (например, в некоторых землях Германии, в Аргентине, Бельгии, Болгарии, Польше). Иногда этот метод устанавливается конституционно. Например, ч. 1 ст. 155 Конституции Португальской Республики 1976 года устанавливает, что депутаты Собрания Республики избираются по системе пропорционального представительства и на основе метода наибольшей средней д’Ондта.

Итальянский исследователь Империалли предложил делить на такой же ряд чисел, но начиная с двойки; в сущности это вариант метода д’Ондта. Французский ученый А. Сент-Лагюе выдвинул в 1910 году идею делить на нечетные числа: 1, 3, 5, 7 и т. д. Эта идея реализована, например, в Латвии. В ряде стран (например, в Болгарии при выборах в Великое народное собрание) применяется умеренный, или модифицированный, метод Сент-Лагюе, при котором первый делитель – 1,4, а последующие – 3, 5, 7 и дальнейшие нечетные целые числа. Поскольку этот метод используется, в частности, в Швеции, Норвегии и Дании, его иногда называют скандинавским. При так называемом датском методе каждый последующий делитель больше предыдущего на три единицы: 1, 4, 7, 10 и т. д. После проведенного деления мандаты передаются тем партиям, у которых полученные частные оказались больше.

Возьмем уже использовавшийся нами числовой пример и распределим мандаты по методу д’Ондта.

Пожертвование на развитие ресурса